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THE PROBUM OF SMALL MOTIONS OF A BODY WITH 

A CAVITY PARTXALLY FILLED WITH A VISCOUS FLUID 

PMM Vol. 33, No, 1, 1969, pp. 1X7-123 
S.G. KREiN, NGO ZUI KAN 

(Voronezh) 
(Received May 16, 1968) 

The general problem of motion about a fixed point 0, of a rigid body with a cavity 
partially or totally filled with a viscous Incompressible fluid. under the action of gra- 
vi 

7 
is studied here in its linearized approximation. Surface tension is neglected. 

or rhe case of motion about the center of mass when the cavity is completely filled, 
this problem was considered in (‘1. The general problem when the fluid viscosity is 
assumed to be small was considered in the paper of F. L. Chernous’ko [a). 

1. Bqurtfonr of motion of the fluid. We denote by $2 theregiontin 
a moving coordinate system &r~yz rigidly attached to the body) which Is filled with 
the undisturbed fluid. We denote by l”, the undisturbed free surface of the fluid, and 
by r1 that part of rhe wall of the cavity in contact with the fluid. In the linearized 
approximation to the Navier-Stokes equations, rhe fluid motion is described in the 
Olzyz system by 
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Here u is the relative velocity vector of the fluid particles, c the body’s anguIar 
acceleration vector, t the radius vector of the fluid particles relative to the point Or, 

p the fluid pressure, p its density, g the acceleration due to gravity vector. and v 
the kinematic viscosity. 

Equation (1.1) is to be supplemented by: 
the equation of continuity, 

divu = 0 (9 3) 

the condition of adherence of the liquid to the wall rt 

u/r, =o (4.3) 

the condition of absence of stress on the free surface Fe 

a, Equation of motlon of ths body. For the determination of the body’s 
position we introduce a fixed coordinate system ~,x,y,z, and a system O,zyz rigid- 
ly attached to the body, with common origin at the fixed point 0,. The two ses of 
axes may be brought into coincidence by means of three rotations (Fig. 1): 

1) about or6 by an angle ii,, whe- 
reby the moving axes O1x, Oa go 
over to the semimoving axes D,E, Otq; 

2) about O,y, by an angle &a, whe- 
reby 

3) about o,t by an angle 6,. whe- 

reby 0, I; -tots,* orrt -for?/,. 
Thus the position of the body is deter- 

mined by three independent angles 
&, 6*, 6s. We call the vector 

8 (t) = {a,, ds, b,} with compon- 
ents in the Orqz system equal to the 

quantides bt, 6s, bs, the vector of 
angular dfsplacement. 

Fig. 1 

In order to find the projection of the 
angular velocity vector w (8) of the 
body onto the axes Orzyz, we first 
find its projection onto the semimoving 
axes O& qt. With accuracy up to 
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terms of second order, they are w = 8’s t 0% = a;, q = 4.~. In passing from the 
system O,$qb to 0,zyz 1 they change in the fo~owing manner: 

*, =: PI co9 6, + iY,sin hr s 6*1, wv = --8’, sin 6, + d,%os 8, = Sag, 

f& = 6”,. 

Thus the angular velocity vector of the body in the system 0,xyz takes the form 

o (t) = icI,* + j8,’ + k6,’ (2.1) 

Here i, j, k are unit vectors on the axes Orx, Oly,Olz. 
For the angular acceleration vector in this system, we obtain the following to within 

second order accuracy: 

8 (f) = i8,” + j&,*’ + k8,” (2.2) 

In the following we shall use (2.1) and (2.2) in the form 

(2.3) 

Suppose the only moment acting on the body is that due to gravity, and that is com- 
posed of the gravitational moment M, calculated for the solid with the liquid imag- 
ined to be solidified, and the gravitational moment M, arising as a consequence of 
the displacement of the fluid in the cavity. We compute the moment M, : 

Mr = mgr, x kl (2.4) 

where kl is the unit vector along the fixed axis &z,, and C, is the radius vector of 
the center of mass of the system relative to the point or. In the system 0,xyz it is 
equal to r, = (0, 0,~) where u is the distance between the point of suspension and 
the center of mass. 

By an immediate calculation we obtain 

Ml = - mga (idI + jb,) 

The moment M, is (see e.g. 1’1) 

(2.5) 

M I = - gpkt x s rfdr, (2.6) 
r* 

Here * p f & & r/) -f- 10 is the equation of the disturbed free surface in the 
moving coordinate system (t is a quantity of first order of smallness). 

The equation of motion of the solid takes the form 

dL -=MlfM, 
N (L = L + L3 (2.7) 
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Here Ls is the angular momentum of me body with fluid solidified, and I+ is the 
relative angular momentum of the fluid. 

With the aid of (2.5), (2.6), Eq. (2.7) may be written in expanded form as follows: 

dQ + mga (id1 + jb) + gpkr x 1 rfdl”, = 0 
l-9 

(2.8) 

Here J is the moment of inertia tensor of the body-fluid system relative to the 
center 01. 

3. Pormulrtion of the problem, We shall study the problem (1.1) -(1.4), 
(2.8) of determining the motion of the solid-fluid system under given initial conditions 

(3.1) 

u (0, 2, Y, 2) = 210 (z, y, z), f (0, &,!I) = fo (t, Y), 8 (0) = 09 o(O) = % 

For completeness we must add to the system a kinematic condition 

u, -df/dt, f(c =v ?I).= iu,dt + f&, y) 
0 

(3.2) 

For given U. and f. on the free surface ra one determines qo, andthis, aswas 
shown in I31 is sufficient for finding the initial values of those functions of which the 
desired velocity u is composed. In fact, from the boundary condition on r. , 

q+g.r= 2~2, or Qo = 2v. $$ b +g (fo + 20) r > 

4. Reduction to an operator equation. To investigate the equations 
in the problem we introduce the function spaces treated in [s]. By wsl’(Q) we denote 
the closure in the norm of the Sobolev space wsr (0) of the set of all solenoidal vec- 
tor functions v in wsl (a) which vanish in a neighborhood of the surface rt. By 
L,” (a) we understand the completion of W,l” (61) with respect to the norm of the 

space L, (8). The orthogonal complement to 4” (a) in L, (Cl) will be the clo- 
sure of the set of all potential vector functions equal to zero on’f’, (see, e.g. [‘I). 
We note that a vector function in L,O (n) has normal component zero on tie bounda- 

ry rl. 
The vector functions 8 X r do not lie in the space LIo (a), and may thus be de- 

composed into two mutually orthogonal parts 

exr=gradq+ll(rxr), l-I(t x r)czG(Q) 

From the above it follows that the function cp may be found as a solution of the 
following boundary value problem: 

Acp=O, cp = 0 on r,, $ = (e x r) on ra 

Applying the method described in [s], one may reduce Eqs. (l.l), (1.2) with con- 
ditions (1.3), (1.4) to two operator equations in L,” (62) : 

$+vAs+lT(*xr)=O (4.1) 
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v%+gTr”=o @=8+‘(I) (4.2) 

Here r is the operator associated with the trace of a vector-function on the free 
surface ra, and A and T are operators generated by the auxiliary boundary prob- 
lems described in [‘I. The operator A will thus be a selfadjoint positive definite oper- 

aror in L,” (Sa) with a completely continuous inverse. 
Taking (2.3)) (3.3) into account, we may write (2.8) in the form 

t + PJ-~ = - mgoJ_lj(io, + &,)dt- 
0 

Equations (4.1) - (4.3) constitute a complete system of operator differential equat- 
ions for the three desired functions 8 (r, z), w (r, t) and a (t). 

6. Integral 6qubtfon&, exf#tonce theowrnr, We shall transform 
Eq. (4. l), the most complicated in the system (4.1) - (4.3). First, with the aid of 
(4.3) we eliminate 8 from (4.1). With accuracy up to terms of second order we 
obtain 

P&a, t) = mgu II (r x J-l(lae + Jo,,)] 

Here rt is rhe radius vector of the variable of integration, relative to 0,. 
In [s) it is shown that the transport operator B will be a selfadjoint operator in 

Lao (a) ,and under the condition 

where Js is the polar method of inertia of the liquid relative to the fixed point 0, 
a& Jll is the least component of the moment of inertia tensor of the solid-fluid 
system relative to O,, the norm of the operator B will be less than one. 

Assuming (5.2). we apply to (5.1) the operator (I + B)‘l and make further the 
following substitutiom in all equations (5. l), (4.2) and (4.3): 
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We note that the operator rA-‘Ia arising thereby is completely continuous [a]. 
Finally, substituting from Eq. (4.2) into the transformed Eq. (5.1) the expression for 
d[ / dt, we obtain 

A-“’ !$ + v (i + &-tA’$ = -+‘A-“‘(q+ [)-(I +B)-VI(O)- 

-((I + Z?)-‘~FI(q t)dt--(I+ I?)-+‘,(r, I’A-:“Qdt (5.3) 
0 0 

We now introduce into consideration the operator A, = A’la (I’ + f?)“A’~~ , which 
will be a selfadjoint positive definite operator on its natural domain of definition and 
will have a bounded inverse .4-‘/a (1 + B)A% Suppose erA*f is the semigroup of 
bounded operators for which the operator VA, is a generator. We recall (see e.g. 1.1, 
p. 106), that the operator A,C-‘U will be bounded for t> 0 and its norm satisfies 
the inequality 

(ADeYA1(6C/f 

From the above it follows that the operator C”M’-@A’/a for t > T may be clo- 
sed, and its closure is bounded. In fact, for v ED (A%) 

)++9A’/qi = IpL(‘-t)AoA+‘(I +&VI< $;- (5.4) 

We apply the operator exp I-VA, (t - T)] A’h to both sides of (5.5), replacing 
t by T in that equation. Then on the left one obtains the derivative 

We integrate both sides of this equation from 0 to t - c. The resulting integral 
of the left side yields the expression 

The integrand in the first term on the right will have the form 

Here Q is a completely continuous operator in Lao (51) (see, e.g. [S]). The 
integral of this term from 0 to t will exist. The integrals of the remaining terms 
on the right wfll have the form 

t-a 

s exp [- VA, (t - r)] A”a(I+B)-lS~(u)dad~ 
u 0 

where @ (a) is a continuous function of a. This last expression may be transformed 
into the form 

5’ &I?~ (s-t) f A-‘% (a) da& = ‘3’ [‘f &,,yA 0-r) dr] A-‘/* 0 (g) dr da = 

0 0 0 e 

Cont. next page 



116 S. G. krein, Ngo Lui Km 

Finally, the last terms on the right, after being integrated, yield expressions of the 
form 

We thus arrive at the conclusion that after integration from 0 to t - e all terms 
on the left as well as on the right have limits as e -+ 0, Passing to the limit as 
e -f () we finally bring the equation under consideration into the following form: 

t 

q = 4j”-wQ) - .$ 
s 

e-y4 @-?)Q (q +t ) dr - (5.5) 
u 

In Eqs, (4.2), (4.3) we perform the substitution l =e 7 and integrate wide respect 
to % from 0 to t. Thus 

Were 

Bg = pJ-q [r-x v] fm, 
a 

Multiplying (5.5). (5.6) by the bounded operator -B,A-‘/* and putting them to- 

gether with (5.7), we reduce the system (5.6) - (5. ?) xo a system of equations of 
Volterra 
tinuous so ution is proved by the usual metftod of successive approximations. 7 

pe with bounded operator kernels. for which the existence of a unique can- 

The solution of the system (5.5) - (5.7) will consist of continuous functions with 

~~~~~~ the spaces he (a) and &. ‘Ibe function constructed according to the 
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u = A-““(q + L) 

will have values in the space w,*O (a) for all t . Further differentiability properties 

of the functions u (t, r’) and Q) (t) were not studied; hence these functions should be 
considered as generalized solutions of the original problem. 

6. The case of 8 completely filled crvlty, In rhiscase U = 8, the 
equation (5.6) is dropped and the system (5.5) - (5.7) simplifies considerably; namely,, 

Co + f3,AJ’“q = to, + &A--“‘qo. - 5 (1-3) F&o, r)dr (6.2) 
0 

BIBLIOGRAPHY 

1. Ngo Zui Kan, On the motion of a solid body with a cavity filled with an 
incompressible viscous fluid. Zh. vychisl. matem. i matem. fiz., Vol. 8, No. 4, 
pp. 914917, 1968. 

2. Chernous ‘ko, F. L. , The motion of a body with a cavity partly filled with 
a viscous liquid. PMM Vol. 30, No. 6, 1966. 

3. Krein, S. G. and Laptev, G.I., On the problem of the motion of a 
viscous fluid in an open vessel. Funkaional’nyi analiz i ego prilozheniia. 
Vo1.2. No.1, 1968. 

4. Kopachevskii, N. D., On the Cauchy problem for small vibrations of a 
viscous fluid in a weak force field. Zh. vychisl. matem. i matem. fiz. Vol. 7, 
No. 1, 1967. 

5. Krein, S. G. , On the oscillations of a viscous fluid in a vessel. Dokl. Akad. 
Nauk SSSR, Vol. 159, No. 2, 1964. 

6. Krein, S.G., Differential Equations in a Banach Space. M., “Nauka”, 1967. 

Translated by P. F. 

ON THEXMOELASTIC STABILIT!l WITH SLIDING FRICTION 
PMM Vol. 33, No. 1, 1969. pp. 124127 

N. V. SMNOVSKIX 
(Khar ‘kov) 

(Received Nov. 18, 1967) 

limiting the normal displacement of the friction couple were 
considered in these works. The character of the thermoelastic processes occurring with 
friction is determined b the balance between heat liberation and heat elimination in 
the friction zone, and d epends , in the long run. on the physical-geome~ic properties 


